МАТЕМАТИКА

Найдено 5 определений
Показать: [все] [проще] [сложнее]

Автор: [российский] Время: [постсоветское] [современное]

МАТЕМАТИКА
образовательная область, включающая учебные предметы и интегрированные курсы по алгебре, геометрии, началам анализа, комплексный курс математики, статистику, теорию вероятностей, логику и др.

Источник: Словарь по образованию и педагогике.

МАТЕМАТИКА
учебный предмет, пришедший в конце 1960-х гг. на смену арифметике.
О девочке, учащейся в третьем классе: «…Рита … грустно добавила: “Мне сегодня по математике тройку поставили. А я на пятерку отвечала”». (Вяземский, 1986).

Источник: Энциклопедический словарь русского детства В двух томах.

"МАТЕМАТИКА"
еженедельное приложение к газете "Первое сентября". Содержит материалы, которые можно использовать на занятиях: разработки уроков по темам, поурочные планы, авторские программы, сопроводительный методический материал, информацию о новой учебной литературе.

Источник: Словарь по образованию и педагогике.

МАТЕМАТИКА
греч. mathematike, от mathema — познание, наука) — 1) наука о количественных отношениях и пространственных формах действительного мира; 2) педагогическая образовательная область, включающая учебные предметы и интегрированные курсы по алгебре, геометрии, началам анализа, комплексный курс математики, статистику, теорию вероятностей, логику и др. математические курсы.

Источник: Профессиональное образование. Словарь

МАТЕМАТИКА
уч. предмет в школе, в содержание к-рого входят элементы арифметики, алгебры, начал анализа, евклидовой геометрии плоскости и пространства, аналитич. геометрии, тригонометрии. Преподавание М. направлено на овладение учащимися системой матем. знаний, умений и навыков, необходимых для дальнейшего изучения М. и смежных уч. предметов и решения практич. задач, на развитие логич. мышления, пространств. воображения, устной и письменной матем. речи, формирование навыков вычислений, алгебраич. преобразований, решения уравнений и неравенств, инструментальных и графич. навыков.
М. как уч. предмет отличается от М. как науки не только объемом, системой и глубиной изложения, но и прикладной направленностью изучаемых вопросов. Уч. курс М. постоянно оказывается перед необходимостью преодолевать противоречие между М. — развивающейся наукой и стабильным ядром М. — уч. предметом. Развитие науки требует непрерывного обновления содержания матем. образования, сближения уч. предмета с наукой, соответствия его содержания социальному заказу общества. Для совр. этапа развития М. — уч. предмета характерны: жесткий отбор осн. содержания; четкое определение конкретных целей обучения, межпредметных связей, требований к матем. подготовке учащихся на каждом этапе обучения; усиление воспитывающей и развивающей роли М., ее связи с жизнью; систематич. формирование интереса учащихся к предмету и его приложениям.
Первые сведения об обучении детей простейшим вычислениям встречаются в источниках по истории стран Др. Востока. Большое влияние на развитие шк. матем. образования, особенно в странах Европы, оказала матем. культура Др. Греции, где уже в 5 в. до н. э. в связи с развитием торговли, мореплавания, ремесел в нач. школе изучались счет и практич. геометрия. Немногие ученики крупных ученых получали геометрич. знания теоретич. характера: напр., в науч. школе Пифагора обучали доказательствам. Значит. вкладом в развитие шк. матем. образования стали учебник арифметики арм. ученого Анании Ширакаци (7 в.; содержал материал по иск-ву счисления), первый систематич. курс алгебры средне-азиат. математика и астронома аль-Хо-резми (9 в.). В 10—12 вв. в нач. курсы школ Европы (в т. ч. и Киевской Руси) включались элементарные матем. знания. С 12—13 вв. в гор. школах Зап. Европы изучались элементы арифметики (коммерч. вычислений и т. п.); геометрия по книгам Евклида (3 в. до н. э.) вплоть до 14—15 вв. изучалась только в нек-рых ун-тах и колледжах. В эпоху Возрождения в содержание обучения в школе кроме элементарных вычислений были включены арифметика, элементы алгебры и тригонометрия. Геометрия занимала вспомогат. место и применялась в основном для лучшего понимания астрономии. Целью изучения М. считалось как общее развитие учащихся, так и использование матем. знаний в нек-рых практич. отраслях, в воен. деле. Уже в 16 в. были опубликованы книги по практич. арифметике и геометрии, к-рые использовались в качестве учебников для купцов и ремесленников. Создание в нач. 17 в. аналитич. геометрии и анализа бесконечно малых сказалось на содержании уч. предмета и методах его преподавания. Расширялось светское шк. матем. образование. Подъем матем. образования в школе происходил в кон. 18 в. На содержание и структуру курса М. оказала влияние школа франц. математиков, к-рые создали новый тип уч. руководств по арифметике, геометрии, алгебре (С. Лакруа, А. Клеро, А. Лежандр, Э. Безу), сблизивших шк. М. с наукой.
В России в нач. 19 в. программы по М. для приходских и уездных уч-щ и гимназий составлялись при участии математика Н. И. фусса и астронома С. Я. Румовского. В уч. план гимназий входили алгебра, геометрия, плоская тригонометрия, аналитич. геометрия, механика и физика. На изучение «чистой» и прикладной М. (вместе с опытной физикой) отводилось по 6 ч в неделю в 1 — 3-х кл., в 3—4-х кл. изучалась статистика. В программу ст. классов гимназии были включены начала математического анализа (о программах по М. для нач. школ см. в ст. Начальное образование).
По Уставу 1828 преподавание реальных наук в гимназиях значительно ослаблялось, прикладная М. упразднялась, «чистая» была основательно сокращена. Циркуляр от 15 дек. 1845 «Об ограничении в гимназиях преподавания математики» предлагал ввести новое «распределение» уч. материала, ставшее первой официально утвержденной программой. Она устанавливала четкие границы курса М., объем и последовательность изучения материала по классам. В 1851 под руководством М. В. Остроградского была создана программа по М. для воен. уч-щ, а в 1852 — для гимназий. В программе для гимназий особое внимание отводилось решению задач, межпредметным связям, и, несмотря на Значит. перегруженность при отсутствии нек-рых разделов (предел, функция, неравенства), она сыграла прогрессивную роль в становлении и развитии шк. матем. образования в России.
Единая, стабильная общегос. программа по М. (1872), составленная при участии П. Л. Чебышева, представляла собой шаг вперед по сравнению с программой 1852. В ней повысились требования к изучению теории, усилилась прикладная направленность обучения. Осн. недостаток состоял в том, что гл. целью преподавания считалось формально-умственное развитие учащихся. Реформа гимназич. образования 1890 не затронула содержания курса М.; более рациональное распределение материала по классам повысило доступность обучения, сокращение нек-рых разделов несколько упростило программу. Впервые ей предпосылалась объяснит, записка, к-рая содержала метод. указания, касавшиеся навыков устного счета, введения отрицат. чисел, разложения многочленов на множители и т. д. Значит. место в записке отводилось преподаванию геометрии, подчеркивалось ее значение для развития формально-логич. мышления.
В 19 в. сложилась междунар. традиц. система матем. образования, для к-рой характерны: сформировавшийся курс элементарной М., не отражавший достижений 17—19 вв.; существование особых, преподаваемых эмпирически пропедев-тич. курсов арифметики и частично нач. геометрии, введенных Г. Песталоцци, И. Гербартом и А. Дистервегом. Самостоят. курсы арифметики, алгебры, геометрии и тригонометрии не были связаны друг с другом. Ученик получал готовые знания в единственной логич. системе и должен был усвоить и воспроизвести теорию при решении искусственно подобранных задач. Это была недостаточно эффективная система обучения. М. стала непреодолимым предметом для б. ч. учащихся (до 10% школьников не переходили в след, класс).
К кон. 19-нач. 20 вв. развивается реформаторское движение в шк. матем. образовании. С критикой существовавшей системы образования в числе первых выступили педагоги-математики России и Германии. С. И. Шохор-Троцкий поставил вопрос. о единстве элементарной и высшей М.; В. П. Шереметевский выступил за сближение уч. предмета с наукой, утверждая, что осн. стержнем курса должна стать идея функции. На 1-м Междунар. матем. конгрессе {1897, Цюрих) нем. математик Ф. Клейн обосновал необходимость реформы матем. образования и сформулировал первые ее принципы, к-рые легли в основу разработанной под его руководством «Меранской программы» (1905). В России в 1907 были разработаны программы для реальных уч-щ, отражавшие осн. требования сторонников реформы. В 1908 в Риме создана Междунар. комиссия по реформе матем. образования (през. Клейн), организованы 19 нац. подкомиссий (в России — пред. акад. Н. Я. Сонин). На 1-м и 2-м Всерос. съездах преподавателей М. (1911—12, 1913—14, Москва) были заложены основы новой системы шк. матем. образования, созданы журн. «Матем. образование 1912—17), «Матем. вестник» (1914—17). Реформа предполагала сближение уч. предмета с наукой, обновление содержания курсов, широкие межпредметные связи, формирование у учащихся функционально-аналитич., алгебраически-оперативного, конструктивного мышления и т. д. Деятельность сторонников реформы не привела к желаемым результатам, сложившаяся офиц. система шк. матем. образования по существу оставалась без изменения до 1917. В первые годы сов. власти был подготовлен — «Проект примерного плана занятий по М. на первой ступени единой трудовой школы-коммуны» (1918—19), к-рый представлял собой единую программу по М., без деления на предметы, составленную по годам обучения (классам). В нее включались арпфметич. действия над целыми и дробными числами, линейные уравнения, буквенная символика, графики, функциональная зависимость, основы техн. черчения (для гор. школ) и основы геодезич. черчения (для сел. школ). Составители программы чрезвычайно перегрузили ее теоретич. материалом, пренебрегая возрастными возможностями учащихся. В 1921 науч.-пед. ин-том Главсоцвоса подготовлены программы, стремившиеся развить творческую активность учащихся, дать им глубокие знания, связать преподавание с жизнью. Однако эти программы были настолько перегружены, что школы вынуждены были составлять свои «программы-минимум». В 1923 введена комплексная система обучения. Из программ школ 1-й и 2-й ступени М. как самостоят. уч. предмет была исключена. В «Новых программах единой трудовой школы» (1924) признавалась чисто служебная роль М., отмечалось, что М. не должна изучаться в школе как «оторванный самодовлеющий» предмет; она служит упражнению детей в счете и измерении изучаемых ими реальных вещей; и занятия М. начинаются только тогда, когда возникнет необходимость применять ее условный и образный язык. В программах школ 2-й ступени матем. материал распределялся по комплексным темам (напр., теорема Пифагора включена в тему «Сов. строй и конституция СССР», отрицат. и дробные показатели — в тему «Империализм и борьба рабочего класса»). Комплексная система обучения связала изучение М. с практич. ее приложением, но вместе с тем способствовала нарушению систематичности обучения, принижению роли теории. В соответствии с пост. ЦК ВКП(б) «О нач. и ср. школе» (сент. 1931) в программах для 10-летней школы был восстановлен систематич. курс М. Однако перегруженность программ, отсутствие межпредметных связей привели к необходимости исключения из курса 10-го кл. элементов аналитич. геометрии и матем. анализа; отд. темы этих разделов вошли в курс алгебры. Программы, утвержденные в 1934, без существенных изменений действовали до 1960.
В сер. 20 в. развитие математики и проникновение ее в разл. области знания потребовали пересмотра содержания матем. образования, введения новых программ для восьмилетней (I960) и ст. классов ср. школы (1963). Содержание программ 1—4-х кл. существенно не изменилось (нач. арифметика с элементами наглядной геометрии); в курсе М. 6—8-х кл. усилилась функциональная пропедевтика, увеличилось число практич. работ и упражнений на вычисление; с 8-го кл. предусматривалось изучение логариф-мич. линейки. В курсе геометрии сохранялись осн. разделы ранее действовавшей программы. Изменилась программа ст. классов. Курс «Алгебра и элементарные функции» включал нек-рые разделы тригонометрии, гармонич. колебания, производную и ее применение к иссл. функций и др. Была исключена комбинаторика. В курс геометрии вошли планиметрия и систематич. курс стереометрии.
Во 2-й пол. 20 в. началось новое междунар. движение за реформу шк. матем. образования, связанное с возрастанием роли матем. методов во мн. областях человеческой деятельности, усилением прикладного значения математики, матем. логики. Реформа имела две тенденции, одна диктовалась преим. прикладными задачами, другая — образовательными и была связана с изменением представлений об удельном весе разл. культурных ценностей, к-рыми должен овладеть человек в процессе обучения. Было выдвинуто неск. проектов программ, уч. пособий, учебников, пытавшихся установить разумное сочетание «классического» и «современного» в содержании шк. М. Напр., амер. программа «9 пунктов», рассчитанная на ст. классы, предполагала подготовку учащихся как в теории, так и в практике дифференциального и интегрального исчисления и аналитич. геометрии; уделяла одинаковое внимание дедукции в алгебре и геометрии, предусматривала разумное использование объединяющих идей (множество, переменные функции, отношения и др.).
Новая программа по М., подготовленная под руководством А. Н. Колмогорова, вводилась в школу в 1969—76. Для нее характерны последоват. введение простейших понятий теории множеств и матем. логики, стремление группировать курс М. вокруг системы стержневых понятий (число, тождеств, преобразования, функция и т. д.). Широко использовались тео-ретико-множеств. и логико-матем. терминология и символика, в т. ч. новая для школы. Курс М. 4—5-х кл. рассматривался как единый, объединяющий элементы арифметики, алгебры и геометрии. Курс алгебры 6—8-х кл. ориентирован на систематич. формирование понятий числа, выражения, функции. Курс геометрии 6—8-х кл. строился на основе геометрич. преобразований, являвшихся не только предметом изучения, но и средством изучения свойств геометрич. фигур. Вводились элементы векторного исчисления (7-й кл.), предусматривалось знакомство с тригонометрич. функциями (8-й кл.). Курс алгебры и начал матем. анализа (9—10-е кл.) отличали строгость изложения, широкое использование матем. символики. Переход на новые программы способствовал проникновению в содержание матем. образования ряда практически важных понятий (производная, вектор и т. д.) и исключению нек-рых архаичных вопросов (напр., типовые арифметич. задачи, именованные числа). Однако реформа матем. образования не привела к желаемым результатам, более того, снизился уровень практич. подготовки выпускников школ. Обучение по новой программе в массовой школе показало, что теоретико-множеств. подход к построению шк. курса М. отличается высокой степенью абстракции, приводит к усложнению в изложении уч. материала, перегрузке учащихся, формализму в знаниях, отрыву обучения от практики. Снизились навыки вычислений, выполнения элементарных алгебраич. преобразований, решения уравнений.
Наличие разл. путей получения общего ср. образования потребовало разработки единых основ матем. подготовки учащихся. В 1981 подготовлена базисная программа по М. для ср. уч. заведений, в 1982 — программы для восьмилетней и ср. школы. Преемственность обеспечивалась за счет системы опорных матем. знаний, навыков и умений, остающихся относительно стабильными в течение продолжит, времени. При переходе от одной программы к другой, как правило, изменялась лишь трактовка вопросов, последовательность их изучения и система построения курса.
Перестройка системы ср. образования, проводившаяся в связи с реформой ср. общеобразоват. и проф. школы (1984), потребовала усиления мировоззренч. направленности курса М., его воспитывающего воздействия (от формирования у школьников устойчивого интереса к предмету и его приложениям до создания правильных представлений о неразрывной связи М. с практикой, о роли математизации науки и матем. методов в решении практич. хоз. задач); прикладной и практич. направленности; роли самостоят. деятельности учащихся. Особое внимание отводится проблеме компьютеризации обучения, формирования компьютерной грамотности. В программе по М. (1986/87 уч. г.) усовершенствована внутр. структура, проведена разгрузка курсов, перераспределены отд. темы и вопросы по годам обучения. В курсе 5—6-х кл. осн. внимание уделяется созданию условий для формирования вычислит, культуры учащихся, усилен логич. компонент обучения. В курсе алгебры 7—9-х кл. осн. упор делается на формирование алгоритмич. культуры учащихся, выделяется формально-оперативная сторона курса. Трактовка оси, алгебраич. понятий ориентирована на их широкое применение в смежных дисциплинах. В программу этого курса были введены элементы «формульной тригонометрии», предусмотрено ознакомление учащихся с работой на микрокалькуляторе. В курсе алгебры и начал матем. анализа (10—11-е кл.) усилено внимание к интуитивно-наглядному представлению о производной и интеграле, их применению для решения прикладных задач математики и физики; введены нек-рые вопросы, ориентированные на применение математики для описания реальных процессов (понятие о матем. моделировании и др.). В курсе геометрии 10—11-х кл. делается упор на формирование умений конструкторской деятельности, систематизацию логич. навыков учащихся.
В связи с введением (1985/86 уч. г.) курса «Основы информатики и вычислительной техники» в программе по М. усилено внимание к формированию матем. базы для изучения информатики. С этой целью курс М. насыщается примерами алгоритмов решения задач, усиливается логич. составляющая курса. Программа предусматривает раннее знакомство учащихся с микрокалькулятором и его использование в смежных дисциплинах (физика, химия и т. д.).
Дальнейшее совершенствование содержания шк. матем. образования связано с требованиями, к-рые предъявляет к матем. знаниям учащихся практика: пром. произ-во, воен. дело, с. х-во, социальное переустройство и т. д. Движение за гуманизацию, демократизацию и деидеологи-зацию ср. образования, характерное для развития отеч. педагогики 90-х гг., оказало определенное влияние и на содержание шк. матем. образования. Идея дифференциации обучения проявилась в новом качестве — в профилизации ср. школы (особенно ее ст. звена). В связи с возникновением в Рос. Федерации относительно нового типа школ (лицеев, гимназий, колледжей и др.) или классов разл. направлений (гуманитарного, техн., экон., физико-матем. и др.) разработаны разные программы по М., рассчитанные на разл. число уч. часов (от 3 до 9 ч в неделю). В программах для разл. типов школ была заложена и разл. номенклатура изучаемых вопросов. Напр., в программу по М. для гуманитарного профиля включены такие разделы, как описательная статистика, элементы теории вероятностей; в программу для техн. профиля — элементы теории игр, элементы линейного программирования и т. п. Рассматриваются возможности и более ранней профилизации общеобразоват. школы, к-рая может внести изменения и в содержание базовой матем. подготовки школьников.
Учебники и учебные пособия по М. Первой рус. уч. книгой по М. была «Арифметика» Л. Ф. Магницкого (1703); в 1739 переведены на рус. яз. «Начала» Евклида. В 1740 издана «Универсальная арифметика» Л. Эйлера, в 1757 — «Универсальная арифметика» Н. Г. Курганова, вытеснившая из школ учебник Магницкого. В 1-й четв. 19 в. преподавание М. велось по трем учебникам: «Нач. основания математики» А. Г. Кестнера (пер. с нем., 1792—94); «Курс математики» Т. Ф. Осиповского (т. 1—3, 1801—23) до 1812 был осн. уч. пособием для гимназий, отличался полнотой и ясностью изложения, но превышал по объему гим-назич. курс; учебник Н. И. Фусса «Нач. основания чистой математики» (ч. 1—3, 1810—12) стал первым стабильным учебником для гимназий (использовался до 1827). В 30-е гг. для употребления в гимназиях рекомендовались «Руководство к арифметике» (1830) и «Собрание арифметич. задач» (1832) Ф. И. Бус-се, к-рые по сжатости, простоте изложения превосходили существовавшие учебники. Они были продуманы и в метод. отношении: обучение начиналось с простых и наглядных истин, соблюдался постепенный переход к трудным понятиям, объяснения приводились раньше правил. В качестве задачника применялись «Арифметич. листки» П. С. Гурьева (1832), содержавшие 2523 задачи с решениями, расположенные в строгой последовательности от «легчайших к труднейшим». В 1830—80 в гимназиях использовался «Курс чистой математики» Бел-лавеня (пер. с франц., 1824, с доп. и изменениями П. Н. Погорельского).
Знаменат. событием стало появление в 1834 книги Н. И. Лобачевского «Алгебра или вычисление конечных», отличавшейся строго логич. и систематич. изложением. Обучение геометрии в дорев. рус. школе велось по учебникам: «Курс математики» Осиповского (1801—02), «О началах геометрии» Лобачевского (1829—30), «Руководство к геометрии для гимназий» Буссе (1844). Осн. пособиями по тригонометрии были «Нач. основания плоской тригонометрии» Фусса (1804), «Тригонометрия» Ф. И. Симашко (1852), «Элементарная теория тригоно-метрич. линий и прямолинейная тригонометрия» И. Д. Соколова (1853) и др.
Во 2-й пол. 19 в. в гимназиях использовались «Элементарная геометрия в объеме гимназич. курса» (1864) и «Нач. алгебра» (1866) А. Ю. Давидова, «Курс алгебры» (1868) А. Н. Страннолюбского. Осн. учебниками по всем разделам М. были книги А. Ф. Малинина (нек-рые в соавторстве с К. П. Бурениным), объединившие в себе учебник и сб. задач и упражнений. Их отличали ясность и живость изложения в сочетании с матем. строгостью. При объяснении каждого действия указывались его значение и те вопросы, к-рые могли быть решены с его помощью; каждый параграф заканчивался рядом вопросов, требовавших иногда самостоят. вывода из прочитанного. С 90-х гг. 19 в. в школе используются учебники А. П. Киселева.
После Окт. революции преподавание М. в ср. школе в основном велось по переработанным учебникам Киселева (арифметика, алгебра, геометрия) и Н. А. Рыбкина (тригонометрия). После 1945 стабильными стали учебник Киселева и задачники: по арифметике Е. С. Березан-ской, алгебре Н. А. Шапошникова и Н. К. Вальцева, геометрии Рыбкина. К переработке и редактированию шк. учебников были привлечены видные педагоги-математики А. Я. Хинчин и Н. А. Глаголев. Ставилась задача — сделать каждый учебник единым логич. систематизированным целым. Для этого в содержание включался материал, к-рый мог быть усвоен только в ст. классах; он набирался мелким шрифтом и при первом чтении учебника опускался.
В 50-е гг. вышли новые учебники, к составлению к-рых были привлечены учителя-математики: сб. задач по арифметике С. А. Пономарева и Н. Н. Сырнева; учебник по алгебре для 6—7-х кл. А. Н. Барсукова и сб. задач П. А. Ларичева; учебник по геометрии для 6—7-х кл. H. H. Никитина и сб. геометрич. задач Никитина и Г. Г. Масловой; учебник по тригонометрии С. И. Новоселова и сб. задач П. В. Стратилатова. В 1954 введены учебники арифметики для нач. школы А. С. Пчелко и Г. Б. Поляка; для 4—5-х кл. — Н. И. Шевченко. В 60 с гг. изданы «Арифметика» И. К. Андронова, и В. М. Брадиса, учебники по алгебре Д. К. Фаддеева и И. С. Сомин-ского; П. С. Александрова и А. Н. Колмогорова; по геометрии Д. И. Перепел-кина, А. И. Фетисова; по тригонометрии Б. Б. Пиотровского, А. Ф. Берманта и Л. А. Люстерника и др. После 196& изданы учебники по М. для 1—3-х кл. М. И. Моро и др. и для 4—5-х кл. Н. Я. Виленкина и др.; по алгебре для 6—8-х кл. Ю. Н. Макарычева и др.; по геометрии для 6—8-х кл. Колмогорова и др.; по алгебре и началам анализа для 9—10-х кл. Колмогорова и др.; по геометрии для 9—10-х кл. 3. А. Скопеца и др. В 1979 разл. авторскими коллективами подготовлены пробные учебники. Пробный учебник по геометрии А. В. По-горелова был утвержден в качестве общесоюзного (1982). С 1990 в школах Рос. Федерации применяются параллельные учебники. По алгебре для 7—9-х кл. — учебники под ред. С. А. Теляковского и учебники Ш. А. Алимова и др.; по геометрии для 7—9-х и для 10—11-х кл. — учебники А. В. Погорелова и учебники Л. С, Атанасяна и др.; по алгебре и началам анализа для 10—11-х кл. — учебники под ред. А. Н. Колмогорова и учебники Алимова и др. Изданы эксперим. учебники для классов разл. профилей (напр., для физ.-мат. — учебники по геометрии А. Д. Александрова и др.; для гуманитарного профиля — учебники математики В. Ф. Бутузова и др.).
Методика преподавания М. начала разрабатываться Я. А. Коменским. Нек-рые вопросы нач. обучения арифметике рассмотрены им в «Великой дидактике» (1657). Методика обучения счету раскрывалась в «Руководстве учителям первого и второго классов нар. уч-щ, Рос. империи» Ф. И. Янковича (1783).
Методика обучения М. впервые выделилась как самостоят. дисциплина в книге И. Г. Песталоцци «Наглядное учение о числе» (1803, рус. пер. 1806). В 18- нач. 19 вв. метод. вопросы излагались в основном в учебниках. Первым пособием по методике М. в России стала книга Буссе «Руководство к преподаванию арифметики для учителей» (1831). Создателем рус. методики арифметики для нар. школы считается П. С. Гурьев, к-рый критерием правильности решения метод. проблем признавал опыт и практику. Большое значение для постановки преподавания арифметики в рус. школе имели «Методика арифметики» В. А. Евтушевского (1872), метод. пособия для учителей и учащихся А. И. Голеденберга (1885). Крупнейшим методистом математиком дореволюц. России был Шохор-Троцкий. Разработанный им «метод целесообразных задач» используется в совр. школе Рос. Федерации. Методы Шохор-Троцкого рассчитаны на то, чтобы сберечь силы ребенка, пробудить в нем интерес и любознательность, поддержать самодеятельность и самостоятельность. Первый труд по методике геометрии принадлежит А. Н. Острогорскому («Материалы по методике геометрии», 1883), Методика алгебры разрабатывалась в трудах Страннолюбского, В. П. Ермакова, Шереметевского, К. Ф. Лебедин-цева и др.
Разработке сов. методики преподавания М. способствовала организация секции методики М. в Программно-метод. ин-те (осн. в 1931). Были изданы «Методика арифметики» Шохор-Троцкого (1935), «Методика алгебры» И. И. Чистякова (1934), «Геометрия. Метод. пособие» Р. В. Гангнуса и Ю. О. Гурвица (1934—35).
К 1950 вышли «Алгебра» (книга для учителя) В. Л. Гончарова (ч. 1—2, 1949- 1950), метод. пособия В. М. Брадиса, Д. И. Перепелкина, Н. Ф. Четверухина, А. И. Фетисова и др. В 1960—80 изданы: «Методика преподавания математики в восьмилетней школе», под ред. С. Е. Ляпина (1965), «Методика преподавания математики в ср. школе» Ю. М. Колягина и др. (1975; ), «Методика обучения математике в 4—5-м классах» Е. И. Лященко, А. А. Мазаника (1976),
«Дидактика математики» Н. В. Метельского (1975). Изд-во «Просвещение» выпускает серии книг «Библиотека учителя математики», брошюр для учителей по актуальным вопросам методики М. и брошюры для учащихся. К каждому действующему учебнику издается комплект уч.-метод. пособий, включающий книгу для учителя, дидактич. материалы, таблицы и т. д. Изд-вом «Наука» выпущен ряд книг по М. ведущих ученых-математиков (С. М. Никольского, Л. С. Понтрягина, А. Н. Тихонова) для учителей и учащихся ст. классов. Большую метод. помощь учителям оказывает журн. «Математика в школе» (осн. в 1927, до 1936 выходил под др. названиями). Среди учащихся и учителей популярен журн. «Квант» (1970), освещающий, в частности, вопросы совр. математики.
Отеч. методика преподавания М. строится на основе дидактич. принципов обучения, с учетом возрастных и индивидуальных возможностей учащихся. Широко используются методы целесообразных задач, эвристич. и вопросно-ответный, самостоят. работы учащихся. Большое внимание уделяется упражнениям в решении задач, доказательстве теорем, устном счете и т. д., работам измерит., расчетного и конструктивного характера, графическим (с построением и анализом графиков, схем, таблиц, диаграмм); моделированию — построению моделей задач, теорем. Важное место на уроках М. отводится работе на микрокалькуляторе, тренажере и т. д.
Межпредметные связи реализуются не только в содержании, но и при использовании приемов и методов обучения. В распоряжении учителя М. имеются разл. средства обучения, наглядные уч. пособия (модели, таблицы, чертежи и пр.), выпускаемые пром стью, и самодельные, изготовленные учащимися на практич. занятиях. Возрастающая роль ТСО, наглядных пособий приводит к необходимости создания в каждой школе специа-лизиров. кабинетов М. Перспективна организация в школах автоматизиров. классов.
Внеклассная работа по М. является одной из форм индивидуализации обучения. Различают занятия с отстающими учащимися (доп. занятия) и занятия с учащимися, проявляющими к М. повышенный интерес и способности. Тематика внеклассных занятий по М. не ограничивается углубленным изучением программных вопросов, а также ист. экскурсами по той или иной теме, решением задач повышенной трудности. В их тематику включается знакомство с новыми направлениями в науке: комбинаторика, теория вероятностей и пр. Повышению интереса учащихся к М. способствуют факультативные и кружковые занятия, викторины, конкурсы и олимпиады, ма-тем. вечера, экскурсии и т. д. Большой популярностью среди учащихся пользуются юношеские матем. школы, заочные матем. школы и др., матем. школы при крупнейших ун-тах.
Преподавание М. в зарубежной школе. Разл. варианты теоретико-множеств. построения шк. курса М., характерные для заруб. школы 60—70-х гг., за последнее десятилетие практически исчерпали себя, особенно в массовой школе.
В школах развитых стран Значит. место в программах по М. отводится теории вероятностей и статистике. В программах школ Японии раздел «Статистика» является основным уже в 1-м кл. нач. школы. Элементы теории вероятностей на строгой матем. основе вводятся в ст. классах школ Бельгии и Франции. Геометрия как самостоят. уч. предмет во мн. школах не изучается, отд. ее вопросы включены в курс арифметики, алгебры и начал матем. анализа. Распространившееся с 60-х гг. в среде учителей математики (США, Великобритании и др. стран) требование «Евклид должен уйти!» явилось реакцией на неудовлетворенность традиц. системой изложения геометрии. Концепция аксиоматич. изложения курса (60-е гг.) не оправдала себя. В большинстве развитых стран матем. образование на ст. ступени общеобразоват. подготовки дифференцировано, условно разделено на 4 группы: программы академич. потоков, общих потоков, технич. (с усилением прикладного аспекта курса) и проф.-технических. В число курсов по выбору на академич. потоке входят «Статистика», «Линейная алгебра», «Информатика» и т. д. В нек-рых странах (напр., в Японии) распространены небольшие интегриров. спец. курсы — по физике, биологии, химии, иллюстрирующие роль М. в описании и изучении явлений и фактов. В кон. 60-х гг. широкое распространение в США, Австралии и др. странах получила идея создания интегриров. естеств.-матем. курсов («Землеведение», «Природа и человек», «Земля и естеств. науки» и др.). В классах, где обучение М. не является обязательным, или «элитных» школах сохраняется высокий теоретич. уровень матем. подготовки учащихся. Объем знаний выпускников ср. школ определяется программами вступит, экзаменов в вузы (для каждого вуза они различны).
Во Франции, в соответствии с новой программой, уже в нач. классах (учащиеся в возрасте 6—11 лет) вводятся элементы алгебры, элементарные теоретико-множеств. понятия, развиваются первые топологич. представления учащихся, закладываются основы логич. мышления. В ср. классах усилено внимание к изучению функций, геометрич. преобразований, векторов. Теоретико-множеств. понятия и элементы матем. логики не являются предметом самостоят. изучения, а служат основой для объединения разл. тем. Матем. подготовка в ст. классах (возраст учащихся 15—18 лет) дифференцируется в соответствии с профилем специализации. Однако независимо от специализации выпускники франц. ср. школы получают Значит. ооъем сведений по матем. анализу и теории вероятностей. На всех ступенях обучения большую роль играет развитие функциональных представлений, овладение матем. методами, формирование исследоват. навыков.
Номенклатура содержания шк. курса М. в странах Вост. Европы практически одинакова, однако в способах его изложения в учебниках и методах преподавания в каждой стране имеются особенности, представляющие известный интерес. В школе Польши традиционно сохраняется достаточно высокий теоретич. уровень курса М. (в т. ч. за счет изложения элементов теории множеств). Преподавание М. в школе Чехии и Словакии отличается ориентацией на жизненные, практич. ситуации. В школах Болгарии уже с нач. классов последовательно проводится алгебраич. пропедевтика; в 7- 8-х кл. учащиеся знакомятся с теоретико-множеств. подходом, элементами логики, разл. связями М. с др. уч. предметами и практикой. С введением курсов профориентац. типа по выбору учащихся возросли возможности организации спец. занятий со школьниками, имеющими интерес, склонности и способности к М., в кружках, школах, лекториях Союза математиков Болгарии, физ.-мат. классах, матем. гимназиях и т. д.
В школах Венгрии с 1978/79 уч. г. помимо традиц. тем изучаются комбинаторика, аналитич. геометрия, вычислит, техника и др. В обучении приемам анализа и синтеза осуществляются межпредметные связи, применяются методы моделирования. Особенностью венг. программы является определенная дифференциация в изучении отд. вопросов: весь уч. материал для гимназий делится на 2 части — основную (обязательна для всех учащихся) и дополнительную. Для каждого класса существует 2 учебника по М.: один написан традиционно, другой соединяет в себе учебник и рабочую тетрадь с печатной основой и предназначен для более цельного приобретения новых знаний, их закрепления и систематизации. В нем содержатся задания, рассчитанные на обязательное самостоят. выполнение всеми учащимися как на уроке, так и дома. В 80-е гг. наметилась тенденция к сокращению кол-ва часов на изучение М., к-рое компенсируется более глубоким изучением предмета и развитой системой факультативных курсов. Лит.: Клейн Ф., Элементарная математика с точки зрения высшей, пер. с нем., т. 1—2, М.-Л., 1933—342; Андронов И. К., Полвека развития шк. матем. образования в СССР, М., 1967; его же, Три этапа в развитии междунар. шк. матем. образования в XIX — XX вв., МШ, 1967, № 4;Маркушевич А. И., К вопросу о реформе шк. курса математики, там же, 1964, № 6; Соболев С. Л., Преподавание математики в Сов. Союзе, там же, 1973, № 1; История матем. образования в СССР, К., 1975; Хрестоматия по истории математики, [т. 1 — 2], М., 1976—77; Г и с д с н-к о Б. В., Математика и матем. образование в совр. мире, М., 1985; Метель-с к и и Н. В., Дидактика математики, Минск; Столяр А. АПедагогика математики, Минск, 19S63; С о и с p У. У., Прелюдия к математике, пер. с англ., М., 1972; его же, Путь в совр. математику, пер. с англ., М., 1972; Фройденталь Г., Математика как пед. задача, ч. 1 — 2, М., 1982—83; Математика. Уч. пособие для студентов пед. ин-тов, М., 1977; Методика преподавания математики в ср. школе. Частные методики, М., 1977; Методика преподавания математики в ср. школе. Общая методика. Сост. Р. С. Черкасов, А. А. Столяр, М., 1985; II о и а Д., Как решать задачу, пер. с англ.,
M., 1962; Кудрявцев Л. Д., Совр. математика и ее преподавание, M.; Л о и д С., Матем. мозаика, пер. с англ., M.; Фридман Л. М., Учитесь учиться математике, М., 1985; О л с х-ник С. Н., Нестеренко Ю. В., Потапов М. К., Старинные занимат. задачи, М. 1985; Оборудование кабинета математики, M.; Верченко А. И., Матем. подготовка выпускников ср. школы Франции, МШ, 1981, N 2; Л а х т и — и с и В. Э., Система матем. образования в Финляндии, там же, 1982, № 3; С а б о А. М., Преподавание математики в школах ВНР, там же, 1984, N 4; Ганчев И., Кучинов И., Обучение математике в НРБ. там же, 1985, № 6. Ю. М. Калягин.

Источник: Российская педагогическая энциклопедия



Найдено научных статей по теме — 15

Читать PDF
320.73 кб

Частная коллекция математика и педагога И.И. Сомова в фундаментальной библиотеке Герценовского униве

Крылова Мария Петровна
В 2007 г. в отделе редкой книги фундаментальной библиотеки имени императрицы Марии Федоровны была выделена коллекция Иосифа Ивановича Сомова. Согласно инвентарям, она поступила в фундаментальную библиотеку РГПУ им. А. И.
Читать PDF
2.07 мб

Математика фрактальных объектов и процессов в образовании будущих инженеров

Осинцева Марина Александровна
Рассмотрена актуальная проблема формирования у будущих инженеров нелинейного мышления средствами математики, в частности фрактальной геометрии. Обосновывается необходимость изучения фрактальных структур.
Читать PDF
271.78 кб

Реализация междисциплинарного подхода при конструировании курса "Математика" для студентов бакалаври

Копосова Е. Г.
В статье говорится о применении междисциплинарного подхода при обучении математике студентов бакалавриата факультета химии. Предлагается двухэтапная система обучения.
Читать PDF
280.61 кб

Руководство по выживанию для математика

Касаза Петер Г.
Читать PDF
280.61 кб

Руководство по выживанию для математика

Касаза Петер Г.
Читать PDF
2.84 мб

Математика: проблемы развития и научные центры

Воскресенский Е. В.
Читать PDF
194.86 кб

Вениамин Петрович Мясников «Он был физик по духу с блестящей эрудицией математика и фантазией поэта»

Арбатская Г. Б.
Читать PDF
387.48 кб

Проблема определения целей и содержания учебного предмета «Математика» для студентов гуманитарных сп

Кислякова Мария Андреевна
Сделана попытка обозначить и решить следующие задачи: 1) анализ концептуальных оснований методики обучения математике студентов гуманитарных специальностей; 2) осмысление актуальных вопросов, связанных с введением федерального гос
Читать PDF
76.93 кб

Повышение эффективности самостоятельной работы студентов при изучении курса «Высшая математика» в ву

Земзюлина Валентина Дмитриевна
Отмечается возникшее противоречие в преподавании математики в вузе, связанное с требованиями государственного стандарта дисциплины и сложностями при достижении поставленных целей.
Читать PDF
185.67 кб

Учебно-методический комплекс «Математика и информатика» для студентов гуманитарных факультетов

Шмакова Л. Е.
В условиях информатизации общества повышаются требования к уровню и качеству образования специалистов.
Читать PDF
157.00 кб

Структура курса «Высшая математика» для студентов химического факультета

Мацур Франческа Казимировна
Читать PDF
263.90 кб

Всероссийская конференция «Математика и общество. Математическое образование на рубеже веков»

Читать PDF
0.00 байт

Математика как бизнес (из книги «Верхом на тигре», М. , «Горная книга», 2009)

Гитис Л. Х.
Читать PDF
0.00 байт

Индивидуализация образовательной деятельности для специальности «Прикладная математика» в ДВГТУ

Васильева Т. В.
Читать PDF
0.00 байт

Интернет-проект в интегрированном курсе «Математика и информатика» для студентов гуманитарных профил

Голубев Олег Борисович
В работе представлен интернет-проект для интегрированного курса «Математика и информатика» и возможные способы его организации в сети Интернет.

Похожие термины:

  • МАТЕМАТИКА И КОНСТРУИРОВАНИЕ

    интегрированный курс в начальной школе, входящий в образовательную область "ТЕХНОЛОГИЯ".
  • Прикладная информационно-технологическая направленность обучения математике

    ответственна за формирование приемов учебной деятельности с использованием средств ИТ в следующих областях: 1. построение графиков различных функций с предварительным созданием таблиц значений
  • Развитие познавательного интереса к математике в условиях личностно ориентированного обучения с использованием средств ИТ

    процесс формирования у учащихся приемов осуществления самостоятельной творческой деятельности с использованием средств ИТ: содержательной (понимание сути представления в электронной форме гео
  • ИНСТИТУТ ДИСКРЕТНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

    (до 07.08.1998 г. НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МАТЕМАТИКО-ИНФОРМАЦИОННЫХ ОСНОВ ОБУЧЕНИЯ)основные задачи: исследование проблем информатики и новых информационных технологий, разработка и внедре
  • Математическая информационная система

    программный продукт, обеспечивающий возможность: выполнения построений на экране (в том числе в динамике) математических объектов, графиков функций, диаграмм, описывающих динамику изучаемых зако
  • ЛОГИСТИКА, МАТЕМАТИЧЕСКАЯ ЛОГИКА

    англ, symbolic logic) — современная форма логики, отличающаяся от традиционной логики прежде всего своей формализованностью (принимает во внимание не содержательное значение отдельных высказываний, а
  • ФИЗИКО-МАТЕМАТИЧЕСКАЯ школа при Новосибирском гос. университете

    Существует с 1962 г. по наст. время. Из статьи 2002 г.: «[Основатель] Сибирского отд. Российской Акад. наук Михаил Лаврентьев создал стройную систему подготовки науч. кадров… Замысел был прост: искать бу
  • МАТЕМАТИЧЕСКАЯ ЛИНГВИСТИКА

    Смежная для методики обучения языкам наука; раздел лингвистики, использующий математические методы исследования языка и речи. Данные М. л. применяются для проведения экспериментов в методике.
  • МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

    (от лат. status – состояние). Смежная для методики обучения языкам наука о математических методах систематизации и использования статистических данных для научных и практических выводов. Законы М. с.
  • Математические методы

    применяются для обработки полученных методом опроса и эксперимента данных, а также для установления количественных зависимостей между изучаемыми явлениями. Они помогают оценить результаты эксп
  • ФИЗИКО-МАТЕМАТИЧЕСКИЕ школы

    «...В России такими олимпийскими достижениями, как у 31-го [физ.-мат.] лицея [г. Челябинска], могут похвастаться лишь две физ.-мат. школы – московская № 57 и петербургская № 239. Только они пользуются потр
  • Математические и статистические методы

    методы, применяющиеся для обработки полученных данных методами опроса и эксперимента; позволяют оценить результаты эксперимента, повышают надежность выводов, дают основания для теоретических о
  • МАТЕМАТИЧЕСКИЙ АНАЛИЗ

    Совокупность разделов математики, посвященных исследованию математических функций методами дифференциального и интегрального исчислений. Использование методов М. а. является действенным средс
  • Шкала нормализованная типа N (математическое ожидание µ дисперсия)

    порядковая шкала, полученная в результате преобразования эмпирического распределения частот первичных баллов к модельному нормальному распределению N (математическое ожидание µ, дисперсия), где
  • Нелинейность в математическом смысле

    означает определенный вид уравнений, содержащих искомые величины в степенях больше единицы, или коэффициенты, зависящие от свойств среды. Нелинейные уравнения могут иметь несколько (больше одног